
ON THE STABILITY OF PLANE PARALLEL FLOWS OF 
AN INEOMOGENEOUS FLUID 

(09 USTOICHIVOSTI PLOSKOPARALLLL'NYKE POTOKOV 

NEODNOBODNOI ZIIDKOSTI) 

PM11 Vo1.24, No.2, 1960, pp. 249-257 

L. A. DIKII 
(Moscor) 

(Received 25 September 1959) 

The theory of the stability of a fluid with density stratification is 
worked out to a considerably lesser degree than the problem relating to 
the stability of a homogeneous incompressible fluid. Specific difficul- 
ties which arise in this theory are easily understood after recalling 
the situation which occurs in the study of the stability of plane parallel 
flows of a homogeneous fluid. If, as is usually done, solutions are 
sought in the form of traveling waves 

(here z is the coordinate in the direction transverse to the basic flow 
and x the coordinate in the longitudinal direction), then the Orr- 
Sommerfeld equation 

(V - c) (cp” - a2p) - V”a, = - s (qP - 2a2q" +a%p) 

is valid for the amplitude $J( z), where V(z) is the undisturbed flow velo- 
city. If viscosity is neglected, then 

(V - C) (cp” - a2fp) - V”cp = 0 (0.3) 

In spite of the fact that the “inviscid” equation is considerably 
simpler in form than the mviscousW one, even being of second order rather 
than fourth order, its use enoounters the same difficulties in principle. 
To begin with, the boundary value problem which arises (a is fixed and c 
is an eigen-value) can either have no solutions at all or have insuffi- 
ciently many of them, in the sense that the eigen-functions which corre- 
spond to the eigen-values do not form a complete system. In such a case, 
even though all of the eigen-functions are known. it is nevertheless im- 
possible to answer the fundamental question of stability theory - how 
will an arbitrary disturbance which arises at a certain moment in the 
fluid develop: will it grow without limit or will it remain finite? 
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However. with the introdaction of a nonvanishing viscosity (even if it 
is small) the situation is improved. The eigen-value problem then has a 
complete system of eigen-functions. (From a mathematical point of view, 
this is an eigen-value problem of a certain non-self-adjoint operator 
and the completeness of the eigen- and ‘adjoint’ function can be estab- 
lished, for instance, with the hel-nof a theorem of Keldysh [ 1. Theorem 

1 I., 

However, it is possible to say even more, namely, if viscosity is not 
introduced, then even the very mathematical statement of the problem re- 
mains not quite definite. Namely. the “inviscid’ equation for 4 has a 
singular point at V - c = 0. In this connection its solutions are multi- 
values and the correct branch choice can be made only if solutions of the 
vinviscidv equation are considered as limiting solutions of the complete 
n~is~~~sv equation (a discussion of this question is contained in Lin’s 
book [2 I). 

Unfortunately, we shall not use such an approach in the case of a 
fluid with a density which varies with height. The Orr-Sommerfeld equa- 
tion takes the following form: 

(V-cc)$(p”-a2~)-(v-C)V”p-~$~++~~~(V-c)~Ip~-(Y-cc)V’pl~ 

= - E [(PI’ - 2aaqP + a4q f $2 (p” - as(p)] (V - c) 

It is easily seen that a singular point of the equation remains at 
v- c = 0 even in the presence of non-zero viscosity. Thus. the viscous 

equation at this point proves to be no better than the vinviscidv one, 
and the question of the selection of the branch of the solution is left 
open. Therefore, mechanical transference of a rule for the selection of 
the branch of a solution derived for a homogeneous gluid to the case of 
an inhomogeneous fluid, as Schlichting [ 3 1 does, appears to be ground- 
less. 

Thus, in the study of the stability of an inhomogeneous fluid the 
introduction of viscosity does not give tangible advantages, and if the 
Reynolds number is sufficiently large, it is better to set the viscosity 
at once equal to zero. Further, it is necessary to realize that the ex- 
pansions of the solutions by the wave solutions (0.1) and the investiga- 
tion of the characteristic frequencies are not ends in themselves bat 
only tools for investigating the Ceuchy problem of a partial differential 
equation. But if such wave solutions are not found. then it is necessary 
to solve the Cauchy problem for the development of arbitrary initial 
disturbances in some other way. 

We will consider the motion to be stable if an arbitrary initial dis- 
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turbance arising in a finite region of space remains bounded as time in- 
creases. Otherwise we will call the motion unstable. In the present Paper 
it is successfully shown that such an investigation can be carried 
through, at least in special examples, even in cases for which there are 
no wave solutions. 

The subject of [4 I is similar to the present paper; in that paper a 
similar example has been analyzed; however, the authors have proceeded 
by a different path. Namely, they have not rejected the expansion of the 
solution by the wave form (0.11 in view of the simplicity which results 
from the conplete separation of the variables. However, it is not ex- 
pected that such a wave solution will be a solution of (0.41 in the 
strict sense of the word. It must only satisfy the equation everywhere 
except at the singular point where no junction conditions whatsoever are 
specified. 

One can even show too many of such valmost eigen-• functions in the 
same sense in which there are “too many * eigen-values in the usual bound- 
ary problem if a boundsry condition, corresponding in the present case 
to the junction condition at the singular point, is missing. 

Thus, wave solutions are formally understood as certain easily- 
calculated functions by which one can try to expand the solution of the 
Cauchy problem. However, in [4 1 the basic fact of the completeness of 
the system of *almost eigen- l functions is left without proof. Therefore, 
the approach adopted in [4 3 still requires serious substantiation. 

1. ‘Ihe followi% example will be cousidered: a two-dimensional hori- 
zontal flow in an unbounded half-space, whose velocity Y increases 
linearly with height and whose density pa decreases exponentially: 

V (2) = kg, p. = const e+ 

Taylor 15 1 studied this example by the wave method. He established 
that for values of the Richardson number R =gpfk2 larger than l/4 there 
exist neutral waves and that for smaller Richardson numbers waves do not 
in general exist. 

From this many authors [6,7 1 have concluded that the flow is stable 
only for values of R > l/4. 

It is shown below that the solution is stable for all positive values 
of R (in the sense formulated earlier*). 

* In the indicated paper [ the same is examined, but between 
two solid walls. The conclusion with regard to the stability is the 
same. 
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Let p', PI, u’, to’ be the perturbations of the density, the pressure 
and the velocity. 

We shall write the linearized equations of motion 

If p’. and p’. are eliminated and the stream function $ introduced, we 
then obtain 

By the substitution of e l/z@2 X we shall eliminate the term in c$G/dz; 
we obtain 

We shall transform to a coordinate system which moves along with the 
mean flow: tl = t, z1 = z, x1 = x - krt, We will have 

In place of x1, zlr tl we will henceforth write simply x, z, t. 

We seek solutions in the form e '""((r, tl, i.e. we shall make a Fourier 

transformation with respect to x. For 6 we obtain 

Many authors, including Taylor [5 ] and the authors of I4 1, neglect 
the next to last term in this equation. This term is retained below, 
although its inclusion does not change the results. 

The initial conditions are such that 

c CA 0) = ‘F (4, tf(G 0) =J1(4 

'Ihe boundary condition at the surface of the ground is 
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w=o or r (0, t) = 0 

With regard to the conditions at infinity (as z + m ), such a degree of 

regularity is required here so as to ensure the existence and uniqueness 

of the solution. As we shall see, it is sufficient for this purpose to 

require that [ grow more slowly at infinity than any exponential func- 

tion. It is sufficient to solve separately two boundary-value problems, 

considering I/I 3 0 and 4 z 0. We shall give the solution of the first of 

these problems; the second one is solved in an analogous manner. We will 

assume the initial function qS(z) to be different from zero only in a 

finite region of space; by virtue of the boundary condition +(O) = 0. 

2. At this point we shall derive a formula for the solution of the 

Cauchy problem into which a certain, as yet undetermined, function will 

enter. Following this an integral equation for this function will be de- 

rived. In Appendix 1 the equation will be investigated. 

We will apply the Laplace transformation 

c* (p, 2) = y e--pz r (2, t) cl2 
0 

to Equation (1.2). 

Multiplying (1.2) by e- Pz and integrating with respect to z from 0 
to 00 , we obtain 

-&I m2 - (p - iklt)2]C* - if3kl T + g312C* = i (t) (2.1) 

Here 

F, (t) = - “;;;;:’ , m2 =$p2+12 

We shall designate the Laplace transform of 4(z) by @(t ). Taking the 
initial conditions [*((p, 0) = C(p), &*(p, 0) = 0 into account, w 
find the solution of bation (2.1) in the following form: 

t’(P, t) =‘s TV* (s - ixt) ~2‘ (s - ixtl) - T2* (s - ixt) ‘~1. (s - ixll) 

w (1 - (s - ixtl)]- 1+p1 [ 1 + (s - ixt1)] -I--pa s (h) dt1 + 
0 

+ ix 
71‘ (s - ixt) 72.’ (s) - 7%’ (s - ixt) 71” (s) 

w (1 - p+h (1 + s)-*--pl cf. (4 (2.2) 

Here s = p/m, K = kl/r, /!!I1 = /Z?/ 2 I, and W is a certain constant. The 
functions r I* and rZ* are expressed by the hypergeometric functions 
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Here R is the Richardson 
parmeter r has real values 
purely imaginary values. 

nwnber. It is obvious that far R < l/4 the 
and 0 < r < l/2 and that for R > l/4 it has 

‘Ihe function 4*Ip, t 1, defined by Fomula f2.21, actually represents 
the Laplace transform of a certain function ((1, t); in addition 
((0, 2) = 0. This follows from the asymptotic expression for (*(p, t1 in 
the half-plane Re p > m (or Re s > 11 where this function is analytic. 
Indeed, as is easily shown, as ID 1 3 bp in this half-plsne [*(p, t) = 
oqp I- 21. Ihus, for all E(t) the function (<z, t) satisfies Equation 
(1.21, the initial conditions aud the boundary condition at z = 0. 

3. At present , the question of detemining the fuuction c(t 1 which 
occurs in Formula (2.2) is left open. We have not yet made use of the 
boundary condition at z = 00. A direct way of taking account of it uould 
be as follows. After applying the inversion fomula to (2.2) and finding 

43, t), one should investigate the asymptote of this solution as z * 00 
and require that the condition of regularity be fulfilled. But such a 
way entails considerable difficulties. We shall treat the matter differ- 
ently. Regularity of the function in the half-plane Re p 7 0 is the 
necessary condition for the function [(z, tl to grow more slowly than 
auy exponential fuuction. On the other hand, the functions entering into 
the right-hand side of (2.21 have branch points in this half-plane. It 
turns out that by choosing l(t) it is possible to remove the multivalued- 
ness of this right-hand side (moreover this requirement determines t(t) 
in a unique mauuerl. ‘Ihe function (*(p, t) becomes regular in the half- 
plane Re p > 0 in this way. 

‘lhe hypeqeanetric function has a unique branch point when the value 
of its argment is equal to mity. Thus, I *(s) is 
plane Re s > 0, and r** is the product of 1- sl- ‘+ i 

r 
7 

lar in the half- 
1 by a function 

which is regular for Re s > 0. Therefore, the multivaluedness of the 
right-hand side of (2.2) appears in the calculation of the tems 
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This expression, generally speaking, varies with the path about 
closed contour in the half-plane Re s > 0 which contains within it 
of the segnentC1, l+ iKtl . 

m+iklt 

m+ikitn 

b 

m 

a 
points 

FIG. 1. 

We shall find the increase of this expression with a path about the 
contour shown in Fig. 1. The circuit begins at some point s = l+ iK to 
(0 < to < t) and ends at the same point. All multivalued functions 
Il- (s- iKtl)l-@l, where 0 6 tl < to, increase with such a path by 
one and the same amount. We shall equate the increase of the expression 
written above to zero: 

lo 
F (% + r, % - r; 2 - 61; --ix (to- 21) I2) E (h) dh 

- 

0 I- ix (to - tl)]- 1+& 12 + ix (to - tl)]-“@’ 

ix F’(s/z+ r, s/l--r; 2 - 61; -into / 2) ‘P* (n + iklt,,) -- 
2 (- i~t~)-~+Pfi (2 + ixto)“+’ = O 

or, making use of the formula 

F (a, b; c; z) = (1 -z)c-o-bF (c-u,c-bb; c; z) 

we will have 

5 
0 -h) ‘-@IF (+ -PI+ r, + - p,--r; z-p,; -c+ (t - t1,) E (tl) dt, = g (t) (3.1) 

0 

where 
g (tj = Ct 2--p1 (2 + ixt) 2+P1FJ 

( 
+_tr; -+; 2+; + $@+ 

1 

For determining e(t) we have obtained an integral equation of 
Volterra type of the second*kind with a difference kernel. 

iklt) 

the 

4. In order to obtain a formula for the solution to our problem, it 
remains to carry out the inverse Laplace transformation of Equation (2.2), 
i.e. to pass to the inverse form. It is not necessary to express these 
inverse forms in terms of well-known special functions. For our purpose 
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it is sufficient to know that in each individual case such an inverse 
function actually exists. The latter is easily verified by a well-known 
theorem on the repres~t~ility of functions by a Laplaee integral. 

We shall integrate (2.2) by parts; we have 

All functions of s entering in the right-hand side of (4.0, i.e, T L, 2*, 

qz** %,2*’ are Laplace transforms of certain functions 7 1 ,(t), 
x1 2 fz ), q 1, 2(z), which follows from their as~tat~~ behavior for 
lakge values of J s J where Re .s > 0. Namely 

]r& (s) ] < K ] s f -*fs+Ber, J Xl,; (s) J < K ] s J--“leCRer, 1 ql,Zf (8) I< K J s J-‘ir-tRep 

while their derivatives tend to zero by an order more quickly. 

Hence, in particular 

Using the convolution theorem, we will have 

4, (t) = f e--i+--tl)e i 4: (t2) dt, dt, 
0 0 

NQW we can see that the stability of the flow, i.e. t;he behavior of 
((2, t > as t + w , depends only on the characteristics of 9,( t 1 or t(t) 
as the argumeut increases without limit. In Appendix 1, where the inte- 
gral equation (3.1) is investigated, it is demonstrated that 
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IW)l<~ for r real 

I~~(t)I<K1+K,llg(K,/t+z)I for r imaginary (4.3) 

From this it is easy to be satisfied about the boundedness of [(z, t) 

as t+m; for r real the integral in (4.2) is evaluated as 

K [ q-V*-+ (2 - q)-‘h-p &I 

0 

where K does not depend on t. For r imaginary the estimate is 

&-‘I~ Iww + 4 I& 

0 

'Ihe latter expression is bounded as t + DO. Thus, the stability theorem 

has been proved. 

5. Appendix 1. We shall make an investigation of the integral equation 
(3.1) omitting some details of the cumbersome calculations. 

For any t(t) the Ileft-hand side of (3.1) together with its derivative 
vanishes for t = 0. Consequently, it is necessary for the existence of 
the solution that the right-hand side g(t) also have the same character- 
istic. But in our case this condition is satisfied. Soon it will be clear 
that this is also sufficient for the existence of the solution. We will 
solve the equation by the Laplace transform method. To do this we will 
multiply both sides of the equation by eeut and integrate with respect 
to t from 0 to 00. As will be shown in Appendix 2, the Laplace transform 
of the function tl-PIF (l/z - fi1 + r, l/z - $1- r; 2 - B1; - 1Jz ixt) is 

where ll pr is the Whittaker function for 1 arg u 1 < l/2 n. 

Hence, it is not difficult to find the Laplace transform of t(t), 
which we shall designate as p(a): 

5* (0) = ‘J2g* (0) 
K~T-~“*W~,,~ (2e-ia’2, 1 x) 

(5.1) 

Using the asymptote of the Whittaker function for large values of 1~1 
and the fact that g* u) = O(lo (- 3, (since g(0) = g’(O) = 0). we find 
that s*(o) = O(lo (- B I- ‘) as lo 1 + - for 1 arg ~1 < l/2 R. It will be 
further shown that c*(a) is regular in the right-hand half-plane. Con- 
sequently, c*(o) which is defined by Formula (4.3) is actually the 
Laplace transform of a certain function t(t) which satisfies the integral 
equation. 



366 L.A. Dikii 

We will pass to the evaluation of r(t) as t + 00. It is not really the 
function t(t) itself which ie of interest to us, but rather the function 

Its Laplace transforni is 

4,‘(a)= w* (0) 
K (a + ixz) e -f#J/XW 

ptl. r (2ewinlaa / x) 

Therefore 

I?,* (a} = 
a 

R (a + ixz) e-“fW pa, p (2ewhf2a / x) 

This function bas a pole at the point (I = - ilr z. We shall designate 
its residue by b(z). It is not difficult to obtain an estiaate of the 
value of this residue for maI1 values of t by using the asymptote of the 
Whittaker function in the neigbborbood of eero. namely 

1 b (2) 1 < Kz’h+Re* 

It is more complicated to ascertain tbe location of tbe poles which 
arise from the zeros of the llhittaker function. In the case of r real 
the fuact ion 

W&J (2@ -w2* / x1 in the sector -_$$<aargadx 

does not have any zeros with the possible exception of one on tbe radius 
arg 0 = 112 II. 

In the case of r imaginary there is a denumerable set of zeros otn) 
on the radius arg D = l/2 R which aocumulate at the origin of the 
coordinate system: here 

v(n) ry jQVa,-ml/ I )’ 1 . 

There are no other zeros in the sector - i/2 R < arg 0 < kv. We shall 
designate the residues at u = otn) by Ok. It is possible to give an 
estimate 

1 an (2) 1 < K 1 of@ / ah / (1 a’“) I+ xz) (R does not depeod on zl 
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In the sector --R+c < arg s<-w/2(c > 0) a finite number of 

can no longer be found. Still we note that as 1 o 1 + 00 the estimate 

367 

zeros 

zlz* (a) = 0 (I a 1-p’) in the sector jargvj<n-c 

is correct. 

According to the inversion formula of the Laplace transform we have 

\ l6” 
R, (4 = & 

YS+= 

s oeatd, 
K (0 + ixz) e-i+Wp,,r(~e-i~BLo 1 x) 

y-ice 

. 7Y 
We shall now deform the contour as shown in Fig.2. 

The slope of the straight lines is arbitrary. We 
choose the radius of the circle in dependence on z 

p 
l 

and t so that cl/t < p < cl/t, Ip - KZI > c3p, where 

CI# C2’ c3 are fixed constants. If r is an imaginary 

-@.. number. we add one further requirement - the circle 
. must intersect the imaginary axis exactly midway 

1 between the roots of the Whittaker function which are 

FIG. 2. distributed along this axis. 

With this choice of p the denominator of the inte- 
grand exceeds Kp 3/2 - Re r along the modulus of the circle. One can 
satisfy oneself on this point using the asymptote of the Whittaker func- 
tion. In this case the integrand is less than KP-‘/~+~” ‘, and the 
integral is less than Kp ‘I’+ ‘a rr i.e. less than Kt’ ‘/‘- Rs r and. con- 
sequently, it vanishes as t+ m.Exactly the same estimate is obtained 
for the integrals along the horizontal segments. The integral along the 
sloping lines vanishes exponentially. With this deformation of the con- 
tour the residues are isolated. We have 

R, (t) = b (z) e- ixzt + 2 
on (Z)eila(n)l t + O(t-l/~-Rer) 

I.@)l>P 

Residues from poles in the region - R + E < arg u < - l/2 a enter also 
into the remainder term, if there are such poles, since their residues 
vanish exponentially as t -D 0~. For r real, instead of the sum which 
appears in the second position, there should be only one term. The neces- 
sary estimate (4.31 for 3x( tl is now obtained without any difficulty from 

t 

*,W = s g (t - h) R, (h) dt,, g (t) = 0 (t-+-r) 

and from the fact th:t otn) vanishes exponentially as n increases, and 
aIso from the estimate of the residues O,,(Z) and b(z). 
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Note. If we were to make the same simplifications as in [5,6 1, which 
were mentioned at the beginning, i.e. if we were to neglect the next to 
last term in Formula (1.2). the results would not be changed except that 

would enter everywhere in place of Up, r. 
, 

The density stratification introduces two dimensionless parameters, 
which correspond to the inertial and Archimedian effects of this strati- 
fication. The indicated simplification is the neglect of the inertial 
effect. 

6. Appendix 2. We shall prove that the Laplace transform of the hyper- 
geometric function 

is 

t---P F (‘is - fj -+ r, 1/z - /3 --r; ;l - a; - at) (fle (d - B) > 0) 

finrgaj<z, Iargo/al<w) 

For the demonstration we shall use the Barnes-Yellin integral [8,p.71] 

f (1) EZ c~-‘-~F (l/~ - I3 + r, % - !3 - r; d - P; - at) = r (1,2 _ p ~(~l,~~,_ p + r) x 

1 im r (‘/a--P c --+ +s) r p/z - p - r + S) r (- S) 
?(s r(d-P-4-S) 

( at)5td-1--8ds 

-Iim 

The integration path is such that the poles of the function 
~(l/z-~--_++) xI’(~/~--~-~-~+s), i.e. the points ~=P-~/zfr---n 
(n = 0, 1, 2,. . .).lie to the left of the path, and the poles of r (- s ), i.e. 
the points s = 0, 1, 2, . . . , lie to the right of the integration path. 
We shall apply the Laplace transformation to both sides of this equality 

r -p s) r (iis - 3 + 7 + S) r (--S) 
r ($ - p - r) r (lii2 - ,3 i- r) 

asa--s-d+P ds 

We shall make the variable substitution s= -sl: 

r - S) r (lh - 9 + r - S) r (s) 
I’ (Q - f3 - r) r (lh - 13 f rf (a / a)” ds 

-ioo 

There remains only to recall the Barnes-Mellin formula for the 
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Whittaker function [8, p. 148 1 

Wp,, (0 I a) = 

e--oi2a (qa)P ice 

2xi 
s 

IT Ph. - B - r - s) r (‘/a - B + r - s) r (s) (~ , a)8 d 

r (% - B - r) r (l/s - ,5 + r) 
s 

--iw 

which proves our assertion. 
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